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When attempting to compute unsteady, variable density flows at very small or
zero Mach number using a standard finite volume compressible flow solver one
faces at least the following difficulties: (i) Spatial pressure variations vanish as the
Mach numberM→ 0, but they do affect the velocity field at leading order; (ii) the
resulting spatial homogeneity of the leading order pressure implies an elliptic di-
vergence constraint for the energy flux; (iii) violations of this constraint crucially
affect the transport of mass, preventing a code to properly advect even a constant
density distribution. We overcome these difficulties through a new algorithm for con-
structing numerical fluxes in the context of multi-dimensional finite volume meth-
ods in conservation form. The construction of numerical fluxes involves: (1) An ex-
plicit upwind step yielding predictions for the nonlinear convective flux components.
(2) A first correction step that introduces pressure gradients which guarantee com-
pliance of the convective fluxes with a divergence constraint. This step requires the
solution of a first Poisson-type equation. (3) A second projection step which provides
the yet unknown (non-convective) pressure contribution to the total flux of momen-
tum. This second projection requires the solution of another Poisson-type equation
and yields the cell centered velocity field at the new time. This velocity field exactly
satisfies a divergence constraint consistent with the asymptotic limit. Step (1) can
be done by any standard finite volume compressible flow solver. The input to steps
(2) and (3) involves solely the fluxes from step (1) and is independent of how these
were obtained. Thus, our approach allows any such solver to be extended to compute
variable density incompressible flows.c© 1999 Academic Press
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1. INTRODUCTION

Low Mach number variable density flows play an important role in many natural and
technological processes: Free convection in the atmosphere takes place at low speed and
is controlled by the rate of change of density with height. The general circulation of the
oceans is mainly driven by salinity and temperature, i.e., density, gradients. In combustion
processes density fluctuations occur due to thermal gas expansion upon chemical energy
conversion. If the flame fronts are thin in comparison with some characteristic length of
the flow, these density fluctuations may have very steep gradients. Prominent examples are
fuel/air combustors in energy plants, open fires, Otto engine combustion, etc. Industrial
processes like spray deposition and fluid jetting require the numerical simulation of fluids
having different material properties. In these flows high density ratios (e.g., between water
and air) and low velocities are common.

Numerical methods for low and zero Mach number flows couple the evolution in time
of some set of dependent variables withdivergence constraintsfor the underlying ve-
locity fields. These constraints (e.g.,∇ · Ev= 0 in inviscid non-reacting flows in closed
domains of constant volume) arise because of the singularity of the governing equa-
tions in the limit of vanishing Mach number (M). Due to this singularity any numeri-
cal method for zero and low Mach number flows has to cope with at least two funda-
mental problems. These are thedynamic range problemand thesignal speed problem.
The dynamic range problem is associated with the fact that pressure fluctuations, non-
dimensionalized by the background pressure, vanish asM→ 0. As a consequence, their
numerical representation deteriorates if only a single pressure variable is used in a nu-
merical scheme. The signal speed problem arises from the order of magnitude difference
between the speed of sound and a characteristic flow velocity asM→ 0. The challenge
is to operate a numerical scheme at time steps resolvingconvectionprocesses, while still
capturing correctly the net effects of acoustic waves. The dynamic range and the signal
speed problem are manifestations of the fact that in the limitM→ 0 the hyperbolic part
of the governing equations degenerates to a mixed hyperbolic-elliptic operator. At zero
Mach number a numerical formulation which explicitly accounts for the degeneration of
the governing equations is unavoidable. In the regime of low but finite Mach numbers
such formulation is necessary in order to overcome the accuracy and efficiency draw-
backs which would affect a formulation which naively ignores the singularity of the limit
M→ 0.
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In this paper attention is focused on the extension of conservative methods for compres-
sible flows to the zero Mach number limit. Our approach is based on the low Mach number
asymptotic theory for conservation laws proposed in [19]. We show that the introduction
of suitable elliptic constraints for the numerical fluxes of mass, momentum,and energy
allows any standard finite volume compressible flow solver to be used to compute zero
Mach number flows. The fluxes are constrained via a semi-implicit procedure. First we
compute an explicit approximation to the fluxes of an auxiliary hyperbolic system. In our
implementation this is done in a predictor stage in which the influence of pressure gradients
on the convective fluxes is neglected over a half time step. In the framework of, e.g., Runge–
Kutta schemes this step would simply reduce to a reconstruction step plus flux evaluation.
Second a Poisson-type equation for cell-centered pressures is solved. This pressure allows
the computation of convective fluxes of mass, momentum, and energy that satisfy a velocity
divergence constraint. Such constraint depends on the boundary conditions for the velocity
field and on the source terms of the energy equation. At this point the grid cell interface
pressure as anon-convectivecontribution to the momentum flux is yet unknown. This
pressure is obtained by solving another suitable discrete form of the energy conservation
law. This yields a second elliptic problem. The solution of this problem leads to a new
cell-centered velocity field whichexactlysatisfies a discrete divergence constraint that is
consistent with energy conservation.

The form of the auxiliary system associated with the computation of the convective fluxes
is close to that of the compressible Euler equations but retains finite signal speeds asM→ 0.
Importantly, any finite volume compressible flow solver can be employed in this first explicit
step after minor modifications. The overall scheme enjoys a CFL time step restriction which
is dictated by the speed of the flow, is second order accurate on smooth flows, and requires
the solution of two elliptic problems per time step. The discrete operators associated with
these problems have compact stencil. The resulting linear systems can be solved by standard
iterative methods.

In the next two sections we discuss the relation between energy conservation and velocity
divergence constraints in zero Mach number flows with variable density. We introduce an
asymptotics based regularization and present a new approach for constructing fluxes via
upwind techniques and divergence constraints that are consistent with energy conserva-
tion. Sections 4 and 5 describe in detail the construction of numerical fluxes. Section 6
deals with initial and boundary conditions for the explicit fluxes and for the elliptic prob-
lems. In this section we also discuss a time step restriction for our semi-implicit scheme.
In Section 7 we summarize the flux construction algorithm. To focus attention on the es-
sentials of the method we consider inviscid non-reactive flows throughout the paper. At
the end of Section 3 we describe extensions of the method to account for viscosity, heat
transfer, and background compression/expansion and discuss the meaning of the first pro-
jection for Runge–Kutta time discretizations. In Section 8 we point out the differences
between the present and other modern approaches for the numerical computation of zero
Mach number variable density flows. Numerical results are presented in Section 9. We
assess the accuracy of the method for unsteady constant as well as variable density flows.
Numerical results for two and three dimensional inviscid flows are presented and dis-
cussed. We use standard driven cavity computations to validate a straightforward extension
of the method to the viscous case and compare our results with reference solutions. In
the last example we show the results of the numerical simulation of a thermo-acoustic
refrigerator. This computation involves viscous effects, heat transfer, and background
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compression/expansion. In the last section we draw conclusions and outline further work
to be done.

2. DIVERGENCE CONSTRAINTS INDUCED BY ENERGY CONSERVATION

Consider the equations governing the evolution of a calorically perfect gas in a gravita-
tional force field:

ρt +∇ · (ρEv) = 0

(ρEv)t +∇ · (ρEv ◦ Ev)+ 1

M2
∇ p = 1

Fr2ρ Eg

(ρe)t +∇ · ((ρe+ p)Ev) = M2

Fr2ρEv · Eg

p = (γ − 1)

(
ρe− 1

2
M2ρEv · Ev

)
.

(1)

γ represents the ratio of the specific heats which is assumed to be constant and set to 1.4
in all computations shown in this paper. By non-dimensionalization the accelerationEg is a
constant unit vector. In these equations all variables are dimensionless andO(1). M andFr
represent the Mach number and the Froude number respectively

M := uref√
pref/ρref

, Fr := uref√
glref

. (2)

uref, pref, ρref, andl ref are reference quantities andg is the (dimensional) acceleration due
to gravity. ForM→ 0 the above equations develop a singularity, because:

1. The third term of the momentum equation∇ p/M2 obviously degenerates.
2. The eigenvalues of the Jacobian of the flux functionf M associated with the homo-

geneous part of (1)

f M :=


ρEv · En

ρEvEv · En+ 1
M2 pEn

(ρe+ p)Ev · En

 (3)

degenerate asM→ 0. These eigenvalues areEv · En andEv · En± c/M with c2 = γ p/ρ andEn
any unit vector.

Thus some reformulation is required. According to the asymptotic analysis presented in
[34, 35, 19], we decompose the pressurep into a thermodynamic pressurep(0) and a second
order pressurep(2), i.e.,p = p(0)+M2 p(2). The leading order pressurep(0) is required to be
homogeneous in space, i.e.,∇ p(0) = 0. As a result∇ p/M2 = ∇ p(2). With this formulation
the governing equations for zero Mach number variable density flow in conservation form
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become

ρt +∇ · (ρEv) = 0

(ρEv)t +∇ · (ρEv ◦ Ev)+∇ p(2) = 1

Fr2ρ Eg
(ρe)t +∇ · ((ρe+ p)Ev) = 0

p = (γ − 1)ρe

p = p(0)(t).

(4)

These are the equations we will deal with in this paper. We end this section with the following
three remarks, that are crucial for the subsequent developments:

Remark. Equation(4.5) and the state equation(4.4) imply a strong restriction on the
energyρe which must be prescribed at the initial time: this energy must be homogeneous
in space.

Remark. Consider the zero Mach number governing equations (4). The rate of change
of energy is

(ρe)t = 1

γ − 1

dp(0)

dt
. (5)

If boundary conditions for the normal component of the velocity are prescribed on the
boundary∂Ä of the domainÄ,

Ev · En = b on ∂Ä , (6)

then the rate of change of the thermodynamic pressurep(0) can be computed by integrating
(4.3) overÄ, using Eq.(4.5), the state equation(4.4), the divergence theorem, and the
boundary condition (6)

|Ä|dp(0)

dt
= −γ p(0)

∮
∂Ä

b dS. (7)

Otherwisedp(0)/dt must be imposed and Eq. (7) is a constraint for the distribution of
velocity along∂Ä. In both cases Eq. (5) implies a constraint for the energy flux, namely∮

∂V

(ρe+ p)Ev · En dS= −|V | 1

γ − 1

dp(0)

dt
(8)

for arbitraryV ⊂Ä. This is an integral constraint for the velocity divergence onV because
ρe+ p = γ /(γ − 1)p(0) is constant in space.

Remark. The auxiliary system (see [19])

ρt +∇ · (ρEv) = 0

(ρEv)t +∇ · (ρEv ◦ Ev)+∇ p = 1

Fr2ρ Eg

(ρe)t +∇ ·
((
ρe+ p(0)

)Ev) = 0

p = (γ − 1)ρe

(9)
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with flux function

f ∗ :=


ρEv · En

ρEvEv · En+ pEn(
ρe+ p(0)

)Ev · En
 (10)

enjoys the following properties:

1. The system is hyperbolic.
2. The eigenvalues of the Jacobian of the flux functionf ∗ areEv · En andEv · En± c with

c2 := (γ − 1)(ρe+ p(0))/ρ (see [19]).
3. This system has the same convective fluxes as the zero Mach number governing

Eqs. (4).
4. Solutions of (9) satisfy, for homogeneous pressurep and zero flow divergence at

time t = 0, the following estimates at timet > 0 (see Appendix A.1):

∇ · Ev = O(t)
∇ p = O(t2).

(11)

System (9) is the auxiliary hyperbolic system mentioned earlier, which is used in the first
step of our method to obtain explicit predictions of the convective fluxes.

3. FLUX CONSTRUCTION

Consider a finite volume method for the zero Mach number governing Eqs. (4):

Un+1
V = Un

V −
δt

|V |
∑
I∈I∂V

|I |FI + δtWV . (12)

Un
V is a numerical approximation to the averageun

V of the solutionu(Ex, t) of (4) over the
cell V at timetn

Un
V ≈ un

V , un
V := 1

|V |
∫
V

u(Ex, tn) dV, u :=
 ρ

ρEv
ρe

 . (13)

FI andWV are numerical approximations to the averagesf I andwV of the flux function
f and of the right hand sidew of (4). These averages are taken over the time interval
[tn, tn+1 := tn + δt ] and over the interfaceI and the cellV for f I andwV , respectively,

FI ≈ f I , f I := 1

δt

1

|I |

tn+1∫
tn

∫
I

f(u(Ex, t), En(Ex)) dS dt, f :=

 ρEv · En
ρEvEv · En+ p(2)En
(ρe+ p)Ev · En

 (14)

WV ≈ wV , wV := 1

δt

1

|V |

tn+1∫
tn

∫
V

w(u(Ex, t)) dV dt, w :=

 0
1

Fr2ρ Eg
0

 . (15)
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V is a cell of a conformal space discretization ofÄ. |V | is the volume ofV . I is an interface
between two adjacent cells and|I | is the area ofI . ByV, I we denote the set of all cells and
of all interfaces, respectively.I∂V ⊂ I are those interfaces ofI which lay on the boundary
∂V of the cellV . The sum on the right hand side of (12) is equivalent to the double integral
on [tn, tn+1] × ∂V

δt
∑
I∈I∂V

|I | f I =
tn+1∫
tn

∮
∂V

f dS dt. (16)

We use the indicesV andI to represent sets of cell and interface averages, respectively. In
particularUn

V is a set of approximate cell averages (space averages) at timetn while FI ,WV
represent sets of interface and cell averages (space and time averages). The time averages
are taken over the interval [tn, tn+1]. We will often use the termnumerical fluxto indicate an
interface averageFI . In our implementation the space discretization is a regular Cartesian
grid in two or three space dimensions, but we expect our approach to be applicable to more
complex spatial discretizations as well. We focus the attention on second order schemes.

We propose a new algorithm for constructing numerical fluxesFI for the finite volume
method (12). These are defined through the flux functionf as

FI := f(UI , EnI ) =

 ρEv · En
ρEvEv · En+ p(2)En

ρhEv · En


I

. (17)

In (17) the enthalpyρh := ρe+ p has been used to express the energy flux. The numerical
fluxes or, equivalently, the interface averagesUI , are constructed according to the following
criteria

1. FI is defined on the basis of higher order upwind rules with respect to convection.
2. The interface average velocitiesEvI used to construct the numerical fluxesFI satisfy

the divergence constraint (8), thereby guaranteeing energy conservation.
3. On smooth solutionsFI approximate the average fluxf I up to errors of orderO(δt2).

The numerical fluxes are obtained as follows. First explicit auxiliary numerical fluxesF∗I
are computed

F∗I :=

 ρEv · En
ρEvEv · En+ pEn
ρh0Ev · En


∗

I

(18)

with h(0) := e+ p(0)/ρ. F∗I approximates the average fluxf ∗I

F∗I ≈ f ∗I , f ∗I := 1

δt

1

|I |

tn+1∫
tn

∫
I

f ∗(u(Ex, t), En(Ex)) dS dt (19)

of the auxiliary system (9) up to errors of orderO(δt2). The auxiliary numerical fluxes are
computed by using an explicit high resolution upwind method for hyperbolic systems of
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conservation laws. Our present implementation employs operator splitting techniques to
account for the source terms. The high resolution method is a MUSCL scheme (see [22–
26]) based on slope limiting of characteristic variables and the numerical flux proposed by
Einfeldt [12]. This flux has been extended for system (9) according to the characteristic
analysis presented in [19].

Once theF∗I are known we apply a two-step elliptic correction to compute the final
numerical fluxesFI . In the first step we compute theconvective partof FI . In particular,
the interface velocitiesEv∗I associated with the auxiliary numerical fluxF∗I are corrected to
enforce the divergence constraint (8),

Ev I = Ev∗I −
δt

2

∇ p(2)
∣∣
I

ρI
∀I ∈ I (20)

∑
I∈I∂V

|I |(ρhEv)I · EnI = −|V | 1

γ − 1

dp(0)

dt
∀V ∈ V. (21)

Notice that the correction term on the right hand side of (20) can be interpreted as a
numerical approximation for the integral overI × [tn, tn+ δt/2] of the difference between
the acceleration implied by the governing equations (4) and that implied by the auxiliary
system (9). The estimate(11.2) guarantees that this interpretation is correct up to terms of
orderO(δt3). Assume the interface averagesρI , hI are known. Then Eqs. (20), (21) are,
in conjunction with a linear rule to compute∇ p(2)|I on the basis of cell-centered pressures
p(2)V , a discrete Poisson-type problem for these pressures. Its solution providesp(2)V and the
interface average velocityEv I responsible for advecting mass, momentum, and energy. The
pressure gradient∇ p(2)|I guarantees, through (21), that these interface velocities satisfy
the divergence constraint associated with energy conservation. This is a crucial property
in conservative schemes for zero Mach number variable density flows: a violation of this
property implies, e.g., the failure to properly advect even a constant density distribution!
This first step closely resembles a MAC projection as described in [16]. In the present
context it naturally follows from energy conservation.

In the second correction step the pressure component of the momentum flux at the inter-
facesp(2)I EnI is computed. A straightforward way to do this would be to use the cell-centered
valuesp(2)V to compute, e.g., by the trapezoidal rule, the interface average pressures. This
simple approach, however, doesnot guarantee that the new velocitiesEvn+1

ν exactly satisfy
the zero Mach number divergence constraints. To enforce this property the pressure forces
p(2)I EnI are computed by solving a second Poisson-type problem. This problem is discussed
in Section 5.

In summary our scheme is a systematic procedure for constructing numerical approxi-
mations to the interface averages off over I × [tn, tn+ δt ]. Consistently with second order
accuracy, the time integrals are replaced byδt times second order approximations to the
exact values of the integrand at timet = tn + δt/2. These approximations are defined in
terms of three contributions: the explicit fluxF∗I yields the influence of convection on the
time evolution ofρ, ρEv, andρe. The first correction step includes the effect of∇ p(2) on the
interface velocities. Finally, the second projection provides the pressure contributionp(2)

to the momentum flux at the desired time level.
There is a conceptually different interpretation of this construction of numerical fluxes

for (4). One may view the scheme as an add-on to an existing explicit compressible flow
solver. The sophisticated technology of a high resolution scheme is employed to provide
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proper upwinding for the convective fluxes, thereby allowing a robust representation of high
Reynolds number or even inviscid flows.

In this context the two correction steps can be understood as discrete projections for
the intermediate interface velocity fieldEvI and for the final cell velocity fieldEvn+1

V . These
projections are similar in spirit to Chorin’s original projection method from [10, 9] and
more recent advanced schemes, e.g., in [2, 3, 33, 13, 1].

3.1. Extensions of the Method

Viscous flows. The method outlined in the last two sections can be easily extended to
to cope with viscous flows. A model with zero heat conduction and finite Reynolds (Re)
number has been used in the computation of the driven cavity flows presented in Section 9.
At zero Mach number viscosity has no effect on the energy balance (because the work of
viscous forces scales withM2/Re) and only enters in the momentum equation through a
viscous stress

1

Re
∇ · τ , τ := ∇Ev + (∇Ev)T − 2

3
∇ · Ev (22)

on the right hand side of the zero Mach number governing Eqs.(4.2) and of the auxiliary
system(9.2). In the finite volume method viscous effects appear in the form of a numerical
viscous flux; Eq. (12) becomes

Un+1
V = Un

V −
δt

|V |
∑
I∈I∂V

|I |FI + δt

|V |
∑
I∈I∂V

|I |RI + δtWV ,

RI ≈ r I , r I := 1

δt

1

|I |

tn+1∫
tn

∫
I

r(u(Ex, t), En(Ex)) dS dt, r :=

 0
1
Reτ · En

0

 .
In the extended method such fluxes are added to the convective fluxes, e.g., via Strang [38]
splitting.

Heat transfer, background compression/expansion.Heat conduction brings an addi-
tional term on the right hand side of the energy equation:

γ

γ − 1

1

Pr Re
∇ ·∇T. (23)

Pr andT denote the Prandtl number and the temperature, respectively. The thermal con-
ductivity is assumed to be constant. Let

∇T · En = q on ∂Ä (24)

be the boundary condition for the heat flux across the boundary∂Ä of the domainÄ. The
additional term modifies the divergence constraint that results from energy conservation.
The rate of change of the thermodynamic pressurep(0) becomes

|Ä|dp(0)

dt
= −γ p(0)

∮
∂Ä

b dS+ γ 1

Pr Re

∮
∂Ä

q dS. (25)
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The divergence constraint (8) for the velocity on some arbitraryV ⊂Ä becomes local; using
the equation of statep(0) = ρT for the temperatureT this constraint can be written as∮

∂V

(ρe+ p)Ev · En dS= −|V | 1

γ − 1

dp(0)

dt
+ γ

γ − 1

p(0)

Pr Re

∮
∂V

∇
(

1

ρ

)
· En dS. (26)

The first term on the right hand side of (26) is determined by Eq. (25). In the computation
with heat transfer to be presented in Section 9 the time step integration is done with a second
order Runge–Kutta scheme,

U
n+ 1

2
V = Un

V −
δt

2|V |
∑
I∈I∂V

|I |(Fn
I + Rn

I +Qn
I

)
Un+1

V = Un
V −

δt

|V |
∑
I∈I∂V

|I |
(

F
n+ 1

2
I + R

n+ 1
2

I +Q
n+ 1

2
I

)

Qn
I ≈ qn

I , qn
I := 1

|I |
∫
I

q(u(Ex, tn), En(Ex)) dS, q :=

 0
0

γ

γ−1
p(0)

Pr Re∇
(

1
ρ

) · En
 .

In the above scheme the numerical fluxesFn
I , Fn+1/2

I , Rn
I , andRn+1/2

I do not represent
time averages. As the heat fluxesQn

I , Qn+1/2
I , they are evaluated at fixed times. In the

computation of the numerical fluxes the cell interface pressurep(2)I is approximated by the
pressure that results from the first projection. This is done in order to restrict the number
of elliptic problems per time step to two. The order of the method is not affected by this
approximation.

4. CONVECTIVE FLUXES

In this section the algorithm for computing the convective part of the numerical fluxes
FI , i.e., the interface averagesρI Ev I · EnI , ρI Ev I Ev I · EnI , andρI hI Ev I · EnI in (17), is described
in detail. We assume that the auxiliary numerical fluxesF∗I are known. As explained in the
IntroductionF∗I are computed by a standard high resolution method for the auxiliary system
(9). TheFI are then constructed according to the following rules:

1. DensityρI and enthalpyhI are those associated with the numerical fluxF∗I :

ρI = ρ∗I
hI = h0,∗

I .
(27)

2. The velocityEv I is obtained fromEv∗I through the projection step (20), (21).

Using these rules and the definition ofF∗I in (18) we find

FI = F∗I −
δt

2


∇ p(2) · En

Ev∗∇ p(2) · En+∇ p(2)Ev∗ · En− p(2)En
h0,∗∇ p(2) · En


I

(28)
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up to termsO(δt2). As mentioned in the Introduction, the pressure gradient∇ p(2)|I is
computed on the basis of cell-centered pressuresp(2)V . Let

∇ p(2)
∣∣
I

:= GVI
(

p(2)V
)∣∣

I
= GVI

(
p(2)V
)
. (29)

GVI (p
(2)
V ) is a linear operator mapping cell-centered pressures into interface average pressure

gradients. Using (29) and (27) the discrete Poisson-type problem (20), (21) for the cell-
centered pressuresp(2)V becomes

δt

2

∑
I∈I∂V

|I | h0,∗
I GVI

(
p(2)V
) · EnI =

∑
I∈I∂V

|I |(ρh0Ev)∗I · EnI + |V |
γ − 1

dp(0)

dt
∀V ∈ V . (30)

Let DIV be the discrete divergence

DIV(·) : DIV(EaI)
∣∣
V
= DIV (EaI) := 1

|V |
∑
I∈I∂V

|I | EaI · EnI ∀V ∈ V . (31)

DIV maps interface averages of vector fields into their cell average divergences. UsingGVI ,
DIV the linear system (30) for the cell-centered pressuresp(2)V reads

δt

2
DIV
(
h0,∗
I GVI

(
p(2)V
)) = DIV

(
(ρh0Ev)∗I

)+ 1

γ − 1

dp(0)

dt
. (32)

The set product appearing as the argument of the discrete divergence operator on the left
hand side of (32) is the set of interface averages, sayEw∗I such thatEw∗I := h0,∗

I GVI (p
(2)
V ). The

gradientGVI is defined in such a way that the discrete Laplacian on the left hand side of
(32) has compact stencil and the linear system forp(2)V can be solved by standard iterative
methods. WithGVI as given in Appendix A.2,DIVGVI is, on Cartesian grids, the standard
5-point (7-point) Laplacian in two (three) space dimensions. Boundary conditions for (32)
are discussed in Section 6.

Notice that our flux construction algorithm (28) requires, besides the auxiliary fluxF∗I ,
the interface averagesρ∗I , Ev∗I , andh0,∗

I . The enthalpyh0,∗
I also appears in the elliptic problem

(32) for the pressuresp(2)V . This is a delicate issue, because the numerical fluxF∗I is not
obtained, in general, by evaluating the exact flux functionf ∗ in some stateUI . After all,
as explained in the Introduction, we do not want to restrict the computation ofF∗I to some
special class of high resolution methods. In our current implementation, for instance, the
F∗I are computed using a standard high resolution method which makes use of directional
splitting and approximate Riemann problem solvers, but any other method designed for the
hyperbolic system (9) could be used as well. We circumvent this problem by computingρ∗I
(andEv∗I , h0,∗

I ) through a suitable interpolation of cell averages

ρ∗I := LVI (ρ
∗
V). (33)

The cell averagesρ∗V are those obtained by advancing the data from time leveltn to time
level tn + δt using the high resolution finite volume method for the auxiliary system (9).
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5. INTERFACE PRESSURES

Consider the finite volume method (12). With the convective fluxes for mass and energy
computed as described in the previous section, this method provides the cell averagesρn+1

V
and(ρe)n+1

V at the new timetn+1. Due to our exact projection

(ρe)n+1
V = 1

γ − 1
p(0)(tn+1) ∀V ∈ V . (34)

To compute the new cell averages(ρEv)n+1
V we still need the pressure components of the

momentum flux: this is the last term of(14.2). Let

(ρEv)n+1
V = (ρEv)∗∗V −

δt

|V |
∑
I∈I∂V

|I | p(2)I EnI . (35)

Here(ρEv)∗∗V is the cell average obtained by settingp(2)I to zero in the momentum flux(28.2)
while retaining the effects of∇ p(2) · En onρEvEv · En and using the finite volume method (12) to
update(ρEv)nV . Remember thatp(2)I is, according to (14), a numerical approximation to the
average, on [tn, tn+1] × I , of the exact pressurep(2). Assume a numerical approximation
to the exact pressurep(2) at timetn + δt/2 be known in the grid nodes. Then the interface
averagep(2)I could be computed from the nodal values using some suitable quadrature
rule.

We need to extend our notation: letV̄ be adualdiscretization ofÄ. V̄ consists of control
volumesV̄ centered around the nodes of the original grid. The interfaces between the cells
of V̄ are denoted bȳI . As usualĪ is the set of all such interfaces. In Fig. 1 a cell-centered
and a node-centered control volume,V andV̄ , are drawn for a two dimensional Cartesian
grid. In this figure the cell centers, the nodes, and the midpoints of the interfaces are marked
by circles, squares, and crosses, respectively. Letp(2)V̄ be a set of node-centered pressures.
The interface-centered pressuresp(2)I can be computed by

p(2)I := L V̄I
(

p(2)V̄
)
. (36)

FIG. 1. Cell (V) and node centered (̄V) control volumes; cell centers, nodes, and the midpoints of the interfaces
are marked by circles, squares, and crosses, respectively.
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In (36), L V̄I is a linear operator which maps nodal values into interface averages. LetGV̄V be
the linear operator

GV̄V(·) : GV̄V(aV̄)
∣∣
V
= GV̄V (aV̄) := 1

|V |
∑
I∈I∂V

|I | L V̄I (aV̄)EnI (37)

mapping nodal values of a scalara into cell averages of its gradient field. Using (36) and
(37), the last step of our finite volume method for the momentum equation reads

(ρEv)n+1
V = (ρEv)∗∗V − δtGV̄V

(
p(2)V̄
)
. (38)

The nodal valuesp(2)V̄ are computed following an idea originally proposed by Geratz [18].
The average change of energy onV̄

(ρe)n+1
V̄ − (ρe)nV̄ := − δt

|V̄ |
∑
Ī∈Ī∂ V̄

| Ī | 1
2

(
(ρhEv)nĪ + (ρhEv)n+1

Ī

) · EnĪ (39)

is required to be consistent with the constraint (5), i.e.,

(ρe)n+1
V̄ − (ρe)nV̄ =

1

γ − 1

(
p(0),n+1− p(0),n

)
. (40)

p(0),n+1 is the same as was computed and used in the first projection step. Notice that the
interface averages under the sum on the right hand side of (39) can be expressed to the
desired order accuracy by means of cell averages:

(ρhEv)nĪ = LVĪ
(
(ρhEv)nV

)
. (41)

LVĪ is a (linear) operator mapping cell averages into interface averages. The interfaces are
those associated with the control volumes of the dual grid. In fact (39) is a finite volume
method for the averages of(ρe)on the cells of the dual grid and the sum on the right hand side
of (39) is, after division by|V̄ |, a discrete divergence. LetDVV̄ bethisdiscrete divergence:

DVV̄ (·) : DVV̄ (EaV)
∣∣
V̄
= DVV̄ (EaV) := 1

|V̄ |
∑
Ī∈Ī∂ V̄

| Ī | LVĪ (EaV) · EnĪ . (42)

UsingLVĪ , DVV̄ , and taking into account Eq. (40) the finite volume method (39) yields

−δt DVV̄
(
(ρhEv)n+1

V
) = δt DVV̄

(
(ρhEv)nV

)+ 2

γ − 1

(
p(0),n+1− p(0),n

)
. (43)

Using Eq. (38) to replace the new cell averages(ρhEv)n+1
V on the left hand side of this

equation leads to the following elliptic problem for the unknown nodal pressuresp(2)V̄ :

δt DVV̄
(
hn+1
V GV̄V

(
p(2)V̄
)) = DVV̄

(
hn+1
V (ρEv)∗∗V

)+ DVV̄
(
(ρhEv)nV

)+ 2

γ − 1

p(0),n+1− p(0),n

δt
.

(44)
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The linear operatorsLVĪ andL V̄I are chosen in such a way that the discrete LaplacianDVV̄GV̄V
has a compact stencil and the linear system (44) forp(2)V̄ can be solved by standard iterative
methods. Boundary conditions for (44) are discussed in Section 6; the explicit rules for
computingGV̄V andDVV̄ on Cartesian grids that we have used to produce the results shown
in Section 9 are given in Appendix A.3. For flows without background compression or
expansion the last term on the right hand side of (44) is zero. In this case the new velocities

Evn+1
V : Evn+1

V := (ρEv)n+1
V

/
ρn+1

V (45)

are divergence free in the following sense.

LEMMA 5.1. Let DVV̄ (Evn
V) = 0, (ρh)nV be homogeneous in space, and p(0),n+1 = p(0),n

(no background compression or expansion). Then the(ρe)n+1
V are homogeneous in space

and the velocitiesEvn+1
V obtained by our semi-implicit fluxes from(38)where p(2)V̄ is solution

of (44)satisfy DVV̄ (Evn+1
V ) = 0.

Proof of Lemma 5.1. For p(0),n+1 = p(0),n Eq. (44) becomes

δt DVV̄

(
(ρh)n+1

V
ρn+1
V

GV̄V

(
p(2)V̄

))
− DVV̄

(
(ρh)n+1

V
ρn+1
V

(ρEv)∗∗V
)
− DVV̄

(
(ρh)nV Evn

V
) = 0. (46)

Remember that our flux correction method has been constructed around a divergence con-
straint that guarantees the new cell averages(ρe)n+1

V to be homogeneous in space (cf.
Eq. (34)). Therefore(ρh)n+1

V are homogeneous in space as well. Using homogeneity of
(ρh)nV , (ρh)n+1

V , the linearity ofDVV̄ , and the assumptionDVV̄ (Evn
V) = 0, Eq. (46) yields

DVV̄

(
1

ρn+1
V

(
ρEv∗∗V − δtGV̄V

(
p(2)V̄
))) = DVV̄

(
1

ρn+1
V

(ρEv)n+1
V

)
= DVV̄

(Evn+1
V
) = 0.

Remark. Notice that in the last two sections we have formulated the details of the method
in a general fashion to support readers interested in applying our approach to curvilinear
or unstructured grids. Specialized formulae for Cartesian grids are compiled in Appen-
dixes A.2 and A.3.

6. INITIAL AND BOUNDARY CONDITIONS; TIME STEP RESTRICTION

In this section we discuss initial conditions for the approximate cell averages at time
t = 0 and boundary conditions for the computation of the auxiliary numerical fluxF∗I and
for the Poisson equations (32) and (44). We also address the problem of finding a suitable
time step restriction for our semi-implicit method.

6.1. Initial Conditions

As mentioned in the Introduction the constraint∇ p(0) = 0 implies, because of the state
equation (4), a restriction on the initial condition for the energy(ρe), namely

∇(ρe) = 0.
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The initial cell averages(ρe)0V must be homogeneous in space and equal top(0)(0)/(γ −1).
We take p(0)(0)= 1. The initial density distribution is arbitrary. In Section 9 we show
numerical results both for smooth and for discontinuous density distributions. In the case
of a falling “droplet,” for instance, the density is equal to 1000 inside the droplet and 1 out-
side. The initial velocity field

Ev0
V := (ρEv)0V

ρ0
V

is required to satisfy the divergence constraint

DVV̄
(Ev0
V
) = 1

γ p(0)
dp(0)

dt

∣∣∣∣
t=0

∀V̄ ∈ V̄.

As stated in Lemma 5.1,DVV̄ (Ev0
V) = 0 is sufficient, for constant background pressurep(0),

to obtainDVV̄ (Evn
V) = 0 for all n > 0. Using an argument similar to the proof of Lemma 5.1

one can show that this condition is also necessary.

6.2. Boundary Conditions

In a finite volume formulation boundary conditions appear as constraints for the numerical
fluxes on∂Ä. In our method the interface averagesFI are computed by means of an implicit
correction of the explicit auxiliary numerical fluxesF∗I . Thus, we have to prescribe boundary
conditions both forF∗I and for the implicit cell-centered and node-centered pressuresp(2).

6.2.1. Explicit fluxes. For periodic boundary conditions the constraints forF∗I are stra-
ightforward. For rigid non-permeable walls the convective part ofFI must be zero. This
constraint applies to the numerical fluxF∗I as well:

F∗I :=

 0
pEn
0


∗

I

∀I ∈ Iw. (47)

In the above equationIw represents the set of all wall interfaces. Boundary conditions for in-
and outflow boundaries can be derived by coupling suitable assumptions about the outside of
the computational domain with a characteristic analysis of the governing equations. Again
these boundary conditions must be translated into constraints for the numerical fluxesF∗I .

In our Cartesian grid framework the boundary conditions are implemented by filling rows
of “ghost” cells laying outside the computational domain with suitable cell averages and
then treating∂Ä as a set of standard grid cell interfaces. In the case of periodic boundary
conditions the rules for filling these cells are straightforward. LetV be a ghost cell andV ′

the image obtained reflectingV with respect to the boundary. LetI ′ ∈ Iw be the boundary
interface lying betweenV andV ′. For rigid non-permeable fixed walls one can show that,
with the numerical flux function that we use to computeF∗I ′ , the filling rules

ρV = ρV ′

EvV · En = −EvV ′ · En
pV = pV ′
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are sufficient to guarantee that the numerical fluxF∗I ′ satisfies the boundary conditions (47).
In the case of inflow and outflow boundaries other filling rules must be derived. Notice that,
in general, the filling rules depend both on the boundary conditions and on the numerical
flux function used to constructF∗I . Notice also that, no matter what the boundary condition,
the energy fluxF∗ρe,I on ∂Ä must satisfy some discrete form of the integral condition (7).
As we will see in the next section this is a solvability constraint for the elliptic problem (32)
for the cell-centered pressuresp(2)V .

6.2.2. Cell centered pressures.Consider the Poisson-type problem associated with the
first projection, Eq. (32). The normal derivative

∇ p(2)
∣∣
I
· EnI := GVI

(
p(2)V
) · EnI

must be evaluated on all interfaces belonging to the boundary∂Ä of the computational
domain. Let the boundary condition for the auxiliary interface velocityEv∗I be the same as
those forEv I , i.e.,

Ev∗I · EnI = Ev I · EnI . (48)

This assumption seems to be quite standard in projection methods and has been used in all
our computations. Using (48), Eq. (20) yields

δt

2

1

ρI
GVI
(

p(2)V
) · EnI = (Ev∗I − Ev I ) · EnI = 0 ∀I ⊂ ∂Ä.

With these boundary conditions the right hand side of the linear system (32) must satisfy
an integral constraint for a solutionp(2)V to exist, namely,

∑
V∈V
|V |DIV

( EF∗ρe,I
)+ |Ä|

γ − 1

dp(0)

dt
= 0. (49)

Notice that (49) is nothing but a discrete form of Eq. (7) which prescribes the rate of change
of the background pressurep(0) on the basis of the mass flux through the boundary∂Ä of
the computational domain. Equation (7) was directly derived from the governing equations
for zero Mach number flows (4). In the Introduction we pointed out thatdp(0)/dt must
be computed from (7) or, alternatively, that (7) implies, for a givendp(0)/dt an integral
constraint for the velocities on∂Ä. However, we did not specify in which discrete sense
Eq. (7) should be fulfilled: the answer to this question is now given by Eq. (49).

6.2.3. Node centered pressures.Consider the elliptic problem (44) for the nodal pres-
suresp(2)V̄ . To compute the divergence fieldDVV̄ the discrete normal derivative

LVĪ
(
hn+1
V GV̄V

(
p(2)V̄
)) · EnĪ

and the scalar products

LVĪ
(
hn+1
V (ρEv)∗∗V

) · EnĪ , LVĪ
(
(ρhEv)nV

) · EnĪ (50)

must be evaluated on interfaces̄I ∈ Ī laying beyond the boundary of the computational
domainÄ. This has been done as follows. The dual cells around nodes laying on walls of
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∂Ä have been cut by∂Ä: on these interfaces both the normal derivative ofp(2)V̄ and the scalar
products (50) have been set to zero. Dual cells around nodes laying on periodic boundaries
have been left to overlap the outside ofÄ: rows of “ghost” cell averages and nodes have
been filled with suitable values andLVĪ has been evaluated as on internal interfaces.

6.3. Time Step Restriction

Because of the explicit computation of the numerical fluxesF∗I , the time stepδt is subject
to a CFL [31] stability restriction. We useδt := Cδt∗ with 0≤ C < 1 and

δt∗ := min
I∈I

{
1

|I |min

{ ∣∣V L
I

∣∣
|min{0, Ev∗I · EnI − c∗I }|

,

∣∣V R
I

∣∣
max{0, Ev∗I · EnI + c∗I }

}}
.

V L
I , V R

I are the control volumes on the two sides of theI -interface. Notice that on a re-
gular grid of spacingδx this restriction impliesδt = CO(δx) because the characteristic
speedsEv · En± c of the auxiliary system (9) are ofO(1). C is a safety factor. In most of the
computations presented in Section 9 we usedC= 0.8.

7. SUMMARY OF THE TIME STEP ALGORITHM

In this section we summarize the time step algorithm for the computation of the approx-
imate cell averagesUn+1

V at timetn+1 := tn + δt from Un
V . The time stepδt is given by the

constraint from Subsection 6.3. We assume that the boundary conditions are compatible
with the background pressurep(0)(t) (in the sense that suitable discrete forms of (7), e.g.,
Eq. (49), hold) and that cell averages of ghost cells are properly set whenever they are
needed.

1. Explicit numerical fluxes and interface averages.Using a standard high resolution
finite volume method for the auxiliary system (9) compute numerical fluxesF∗I , source
termsW∗V , and auxiliary cell averages

U∗V := Un
V −

δt

|V |
∑
I∈I∂V

|I |F∗I + δtW∗V . (51)

Compute the auxiliary interface averages

ρ∗I := LVI (ρ
∗
V), Ev∗I := LVI (Ev∗V), h0,∗

I := LVI
(
h0,∗
V
)
.

2. Implicit flux correction: Cell-centered pressures.Solve the discrete Poisson problem
for the cell-centered pressuresp(2)V :

δt

2
DIV
(
h0,∗
I GVI

(
p(2)V
)) = DIV

(
(ρh0Ev)∗I

)+ 1

γ − 1

dp(0)

dt
.

3. Implicit flux correction: Density and energy updates, source term.Compute the
numerical fluxes of density and energy

Fρ,I = F∗ρ,I −
δt

2
GVI
(

p(2)V
) · EnI , Fρe,I = F∗ρe,I −

δt

2
h0,∗

I GVI
(

p(2)V
) · EnI ,
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the new density and energy cell averages

ρn+1
V = ρn

V −
δt

|V |
∑
I∈I∂V

|I |Fρ,I , (ρe)n+1
V = (ρe)nV −

δt

|V |
∑
I∈I∂V

|I |Fρe,I ,

and the source term of the momentum equation

WρEv,V := 1

Fr2

1

2

(
ρn

V + ρn+1
V

)Eg.
4. Implicit flux correction: Intermediate momentum update.Compute the convective

momentum numerical fluxes

F∗∗ρEv,I = F∗ρEv,I −
δt

2

(Ev∗I GVI (p(2)V
) · EnI + GVI

(
p(2)V
)Ev∗I · EnI

)
,

and the temporary momentum cell averages

ρEv∗∗V = ρEvn
V −

δt

|V |
∑
I∈I∂V

|I |F∗∗ρEv,I + δtWρEv,V . (52)

5. Implicit flux correction: Node-centered pressures.Solve the discrete Poisson prob-
lem for the node-centered pressuresp(2)V̄ ,

δt DVV̄
(
hn+1
V GV̄V

(
p(2)V̄
)) = DVV̄

(
hn+1
V (ρEv)∗∗V

)+ DVV̄
(
(ρhEv)nV

)+ 2

γ − 1

p(0),n+1− p(0),n

δt
.

6. Implicit flux correction: Final momentum update.Compute the new cell averages

(ρEv)n+1
V = (ρEv)∗∗V − δtGV̄V

(
p(2)V̄
)
.

Remark. Note that the combination of the intermediate and final momentum updates
are equivalent to the following formulation of the effective momentum flux

FρEv,I = F∗∗ρEv,I +
(

p(2)I − p(0),n+1/2
) · EnI , p(2)I = L V̄I

(
p(2)V̄
)
.

Remark. In the present implementationF∗I andW∗V are computed by coupling a standard
high resolution finite volume method for hyperbolic systems of conservation laws with
Strang [38] splitting to account for the source term on the right hand side of the auxiliary
system (9):

Un,1
V := Un

V −
δt

2

1

|V |
∑
I∈I∂V

|I |F∗I
(
Un
V
)

Un,2
V := Un,1

V + δtW∗V
(
Un,1
V
)

(53)

U∗V := Un,2
V −

δt

2

1

|V |
∑
I∈I∂V

|I |F∗I
(
Un,2
V
)
.
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Steps(53)1, (53)3, and(53)2 are second order numerical methods for the homogeneous
part and for the source term of (9), respectively,

ρt +∇ · (ρEv) = 0, ρt = 0

(ρEv)t +∇ · (ρEv ◦ Ev)+∇ p = 0, (ρEv)t = 1

Fr2ρ Eg
(ρe)t +∇ ·

((
ρe+ p(0)

)Ev) = 0, (ρe)t = 0.

(54)

Comparing (53) with (51) yields

F∗I =
1

2

(
F∗I
(
Un
V
)+ F∗I

(
Un,2
V
))
, W∗V =W∗V

(
Un,1
V
)
. (55)

8. RELATION TO OTHER LOW AND ZERO MACH NUMBER APPROACHES

Projection methods. The present method resembles a projection method for incom-
pressible flows [10, 9, 2, 3, 33] in that we first generateexplicitestimates for various vector
fields which are then corrected in an additional elliptic projection step so as to comply with
the desired divergence constraints. Our scheme differs from these techniques in various
ways, however:

1. Chorin’s classical projection method and its modern higher order extensions ex-
plicitly adopt a constraint for the velocity divergence. Their “projection step” thus projects
explicit estimates of the velocity field back onto the subspace of divergence-free fields or
onto the subspace of fields with a prescribed divergence in more general situations. In con-
trast, the first elliptic correction in our conservative finite volume scheme yieldsconvective
fluxesthat are consistent with energy conservation for zero Mach number. In this fashion
we combine projection techniques with the conservation of mass, momentum, and energy.

2. The projection step of a projection method is an abstract mathematical construction
designed to achieve velocity fields complying with suitable divergence constraints and the
pressure is validly considered as a “Lagrangian multiplier” in this context. In contrast, the
first elliptic flux correction in our scheme naturally appears as part of a half time step update
from time leveltn to tn + δt/2 of the convective fluxes at grid cell-interfaces based on the
original equations.

3. Most of the projection methods cited require a single elliptic solve per time step.
Our approach requires two, which are in addition based on two different discretizations of
the Poisson operator in the respective pressure equations.

4. On the other hand, our approach does not compromise on the discrete divergence,
which we satisfy exactly up to the order of the convergence threshold of our elliptic solvers.
Thus we avoid the approximate projection that has been introduced in a number of higher
order projection methods.

SIMPLE-type methods.Extensions of incompressible flow solvers for inclusion of com-
pressibility effects are often based on the SIMPLE [39] method for incompressible flows
of Karki and Patankar [5]. Successful representative examples of this class of methods can
be found in [14, 17, 7].

One important feature of these methods is also implemented in our approach: There is
a separate scaling of the background pressure by some suitable thermodynamic reference
value and of pressure gradients or pressure corrections by a characteristic value ofρ|Ev|2.
This is equivalent to the introduction of two separate pressure variables in the sense of



EXTENSION OF COMPRESSIBLE FLOW SOLVERS 267

an asymptotic expansionp= p(0)(t)+M2 p(2)(Ex, t) with a spatially homogeneous leading
order pressure (notice thatM2∼ ρ|Ev|2/p in dimensional variables). We have also found
this kind of “multiple pressure variable ansatz” to be a necessary ingredient of a numerical
method that is supposed to smoothly transit to zero Mach number (see the later sections
and [19, 8]).

In [8] the authors also discuss the compressibility extension of a class of SIMPLE-
type methods and provide a more comprehensive account of earlier work in this area.
Their work goes beyond earlier approaches in that they explicitly allow for the presence
of acoustic pulses that are compatible with the small Mach number assumption, but never-
theless affect the velocity field at leading order. The abovementioned pressure expansion
p= p(0)+M2 p(2) with ∇ p(0)≡ 0 precludes such a leading order acoustic effect. This
is, in fact, common knowledge from the theory of characteristics [32], has been proven
rigorously in [34, 35], and was discussed in the context of a multiple length scales asymp-
totic expansion in [19]. Thus, in [8] the authors introduce a three-fold pressure expansion
p = p(0) + Mp(1) + M2 p(2) in the SIMPLE framework and include a physics-induced
multi-grid procedure in order to deal with long wavelength acoustics associated withp(1).
There are currently two major differences between these derivatives of incompressible flow
computation methods and the approach proposed in this paper:

1. Some of the SIMPLE-type schemes are able to handle flows with largespatial
variations of the local flow Mach number [17, 14].

2. The SIMPLE-type schemes generally compromise on conservation of one or more
of the fundamental conserved quantities, mass, momentum, and energy.

The first item emphasizes a current limitation of our approach, as we assume a single,
spatially global characteristic Mach number. The asymptotic analysis that backs up our
numerical techniques will have to be extended in future work to include this case, which is
important for quite a number of realistic applications. As a consequence of the second item,
the extended SIMPLE schemes do not automatically reduce to a conservative finite volume
formulation for compressible flows as the Mach number increases. This, on the other hand,
was one of the major motivations of the present work, even though in this paper we only
discuss the zero Mach number limit version of our method (see [18] for a first “all Mach
number implementation” in more than one space dimension).

Direct extensions of high resolution shock capturing schemes.Another class of low
Mach number techniques results from the desire to extend existing modern high resolution
shock capturing schemes to the incompressible limit. This is also one of the key points of the
present paper. In [20, 21, 6, 15] the truncation and round-off errors of various compressible
flow solvers are carefully analyzed in the limit of small Mach numbers. The approach in
[20, 21] differs quite substantially from that in [6, 15] but both arrive at the same conclu-
sion: The incompressible limit cannot be achieved by standard compressible flow solvers,
unless particular care is taken to eliminate large errors that stem from subtle interactions of
truncation errors and the zero Mach number singularity of the compressible flow equations.

The difficulties of representing low Mach number flows are traced back in [21] to round-
off errors upon subtraction of large numbers. This is consistent with the previous discussions
regarding the asymptotic pressure scalingp= p(0)(t) + M2 p(2)(Ex, t). As M→ 0, spatial
pressure differences are of orderO(M2) and naive discrete differentiation ofp without an
appropriate rescaling must ultimately result in unacceptable round-off errors. Interestingly,
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the authors in [21] do not introduce this scaling explicitly as, e.g., in [17, 14, 19, 8, 18].
Instead they propose to let the automatic scaling of modern floating point arithmetic take
care of the problem. The idea is to always handle deviations from appropriately chosen
homogeneous background values rather than the original absolute values of all flow quan-
tities. The reader should consult the original references regarding a detailed account of
differentiation schemes that do not suffer from the round-off error problem. It is not clear
to us, whether the approach actually allows us to compute the limit forM = 0, because
(i) the floating point arithmetic would have to overcome an infinite gap in amplitudes and
(ii) there is no evidence that the numerical solutions obey, for Mach number tending to zero,
a proper divergence constraint.

The ansatz in [6, 15] specifically addresses higher order upwind schemes that can be
written in the form of central differences plus the effects of an upwind dissipation matrix. One
prominent example is Roe’s method. Turkel’s pre-conditioning technique [11], originally
developed only for steady state computations, is employed and selectively applied only to
the upwind dissipation terms. It is shown that artificially excited small scale acoustics that
are associated withO(M) pressure variations can be suppressed in this fashion. In contrast
to the original method in [11] the resulting scheme does provide a consistent discretization of
the unsteady flow equations. Unfortunately, the authors do not provide any evidence that their
numerical solutions would actually approach a divergence-free flow as the Mach number
diminishes and that their pressure variables obey some elliptic Poisson-type equation. By
employing an implicit time stepping algorithm, the dissipation-preconditioned scheme does
not suffer from the sound-speed CFL constraint, so that efficient computations are possible
even for very small Mach numbers.

9. NUMERICAL RESULTS

In this section we discuss the numerical results obtained with the semi-implicit method
for five test problems. The first four problems are chosen to assess the accuracy and the
efficiency of the method and test its capability to cope with large density variations and small
scale gravity driven flows. For these tests either the exact solution or at least some properties
of the exact solution are known. This allows a meaningful validation of the method and
provides a flavor of the difficulties that must be faced in the numerical simulation of more
realistic flows. Problem number five is included to show that the proposed numerical method
can be extended to cope with boundary driven backward compression/expansion, viscous
forces and heat transfer. All test problems can be run with trivial geometries. For the first
five problems the boundary conditions are those discussed in Section 6. These imply a
constant thermodynamic pressurep(0). Thusdp(0)/dt = 0 andp(0),n = p(0),0 ∀n ≥ 0.

The computations have been performed on regular Cartesian grids. The discrete gradient
and divergence operators and the linear systems for the cell-centered and for the node-
centered pressures are those explicitly given in Appendixes A.2 and A.3. These two linear
systems must be solved at each time step. This has been done using a multi-grid precon-
ditioned conjugate gradient method. The difference with respect to the standard conjugate
gradient solver is that, in each iteration, the new residual vector is computed by applying a
multi-grid cycle to the previous residual vector. There are several ways of visiting the grid
levels during the multi-grid procedure, such as a V-cycle, W-cycle, F-cycle [30], and nested
cycle. In our case, the F-cycle turned out to provide the best contraction rate. As a smoother
a Gauss–Seidel method was used with two pre- and post-smoothing steps on each grid level.
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In two space dimensions a standard 9-point prolongation operator was used. This operator is
defined through bilinear interpolation. In three dimensions trilinear interpolation provides
a 27-point prolongation operator. The adjoint prolongation operator served as restriction
operator. In the presence of large density variations, the coefficients of both linear systems
can change by order of magnitudes. In this case the linear coarse grid operators need to be
constructed by Galerkin’s approximation [30].

As expected the computations show that the CPU time needed to solve the systems
depends linearly on the number of unknowns. The solution of the linear systems accounts
for about 95% of the time required for a computation and demands a memory allocation of
roughly one K-byte per computational point. In each solution the residuals

r2
(

p(2)V
)

:=
∥∥∥∥DIV

(
(ρh0Ev)∗I

)− δt
2

DIV
(
h0,∗
I GVI

(
p(2)V
))∥∥∥∥

2

r2
(

p(2)V̄
)

:=
∥∥∥DVV̄

(
hn+1
V (ρEv)∗∗V

)+ DVV̄
(
(ρhEv)nV

)− δt DVV̄
(
hn+1
V GV̄V

(
p(2)V̄
))∥∥∥

2

have been driven down to 10−7. In the above definitions‖aV‖2 represents the Euclidean
norm of a vector whose components are the valuesaV , i.e.,

‖aV‖2 :=
(∑

V∈V
a2

V

)1/2

and similarly for‖aV̄‖2.

9.1. Convergence Studies

This test problem was originally proposed by Almgrenet al.[33]. It has been designed to
assess the accuracy of the method on constant density flows. For any timet and 0< x < 1,
0< y < 1, the velocity field

u(x, y, t) := 1− 2 cos(2π(x − t)) sin(2π(y− t))

v(x, y, t) := 1+ 2 sin(2π(x − t)) cos(2π(y− t)),

together with the pressurep(2)(x, y, t)

p(2)(x, y, t) := −cos(4π(x − t))− cos(4π(y− t))

is an exact solution of the zero Mach number governing equations (4) with constant pressure
p(x, y, t), constant densityρ(x, y, t), and periodic boundary conditions on the unit square.
Starting fromt = 0, we have computed numerical approximationsuN

i, j to the cell-averages
u(xi , yj , t N) of the exact velocityu at time t N = 3. Similarly vN

i, j , ρ
N
i, j are numerical ap-

proximations to the cell-averagesv(xi , yj , t N) andρ(xi , yj , t N) of the exactv, ρ at time
t N = 3.

Three equally spaced regular Cartesian grids of spacingsh= 1/32, h= 1/64, andh=
1/128 have been used on the unit square. On a each grid the time step was chosen according
to a fixed Courant numberC= 0.8 (see Subsection 6.3). The initial cell averages(ρEv)0i, j
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have been computed forEv0
i, j to be discretely divergence free

(ρEv)0i, j = (ρEv)(xi , yj , 0)− GV̄i, j
(

p(2),0V̄
)
,

i.e., the initial pressurep(2),0V̄ is solution of the Poisson problem

DVV̄

(
1

ρ0
i, j

GV̄i, j
(

p(2),0V̄
)) = DVV̄

(
(ρEv)(xi , yj , 0)

ρ0
i, j

)
with ρ0

i, j = ρ(xi , yj , 0) = 1. In the MUSCL scheme for the computation of the auxiliary
numerical fluxesF∗I unlimited slopes have been used. For each grid we have measured the
2-norme2 and the maximum norme∞ of the cell-errorei, j at timet N = 3,

ei, j := ∣∣ρ(xi , yj , t N
)− ρN

i, j

∣∣+ ∣∣u(xi , yj , t N
)− uN

i, j

∣∣+ ∣∣v(xi , yj , t N
)− vN

i, j

∣∣,
e2 :=

(∑
i, j

(ei, j h)
2

)1/2

, e∞ := max
i, j
{ei, j }.

Notice that this is essentially a measure of the velocity error: due to the exact projection of
the interface velocity, the density error in the 2-norm is of the same order asr2(p

(2)
V ), i.e.,

10−7. Table I showse2, e∞ on the three grids together with the corresponding convergence
rates. These have been computed as follows: Given, e.g., coarse and fine grid 2-norm errors
e2,c, e2, f and the corresponding grid spacingshc, h f the convergence ratep is

p := log(e2,c/e2, f )

log(hc/h f )
.

The exact velocity field (9.1) has been constructed by differentiating the streamline function

φ(x, y, t) := y− x + 1

π
cos(2π(x − t)) cos(2π(y− t))

and takingu := ∂φ/∂y, v := −∂φ/∂x. φ represents a vortical motionϕ := φ − y + x
superimposed on a translation. The vortical motion is simply advected by the velocity field
Ev, i.e.,

Dϕ

Dt
:= ∂ϕ

∂t
+ Ev · ∇ϕ = 0,

as one can verify by inspection. Thus, variable density exact solutions to the governing
equations (4) can be constructed by taking

ρ(x, y, t) := f (ϕ)

TABLE I

Constant Density: Errors and Convergence Rates in the

2-Norm and in the Maximum Norm

32× 32 Rate 64× 64 Rate 128× 128

2-norm 0.193646 2.07 0.0458949 2.10 0.010705
Max-norm 0.236456 2.09 0.0553504 2.11 0.012821
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TABLE II

Variable Density: Errors and Convergence Rates in the

2-Norm and in the Maximum Norm

32× 32 Rate 64× 64 Rate 128× 128

2-norm 0.229332 2.02 0.0563924 2.16 0.0125899
Max-norm 0.263492 1.98 0.0664518 1.68 0.0207160

with some smooth functionf . We used

f (ϕ) := 2+ (πϕ)2 . (56)

The constant on the right hand side is taken to avoid negative densities. The square ensures
that densities monotonically increase from the center to the outer boundary of each vortex:
a density distribution with local maxima in vortex cores would undergo Rayleigh–Taylor
instability. With (56) an exact solution for the density of (4) is

ρ(x, y, t) := 2+ 0.5 cos2(2π(x − t)) cos2(2π(y− t)).

In Table II the error norms for the variable density computations are shown. As for the
constant density case we obtain second order accuracy both in the 2-norm and in the
maximum norm.

9.2. Advection of a Vortex

We consider the advection of a vortex in a channel. The computational domain is the
rectangle [0, 4]× [0, 1]. The upper and lower boundaries are walls; periodic boundary
conditions are imposed at the left and right boundaries. The grid consists of 80× 20 cells.
The initial condition is

ρ(x, y, 0) = 1, p(x, y, 0) = 1, u(x, y, 0) = 1− vθ (r ) sinθ,

v(x, y, 0) = vθ (r ) cosθ

with

vθ (r ) =


r/0.2 if 0 < r < 0.2

2− r/0.2 if R< r < 0.4

0 if r > 0.4

and r =
√
(x − 0.5)2+ (y− 0.5)2.

For the above initial data the exact velocity fort > 0 can be computed:u(x, y, t) = u(x −
u∞t, y, 0) and v(x, y, t) = v(x − u∞t, y, 0), i.e., the initial data are simply advected
by the background velocityu∞. This problem was originally proposed by Greshoet al.
[27]. In Fig. 2 we show contour lines of the stream function for three computations. They
have been done using different slope limiters in the MUSCL step of the Godunov type
method for the computation of the auxiliary fluxes. Due to the rough discretization the
results exhibit a significant deformation of the vortex. In contrast to the results shown in
[27, Fig. 13], however, the core of the vortex is advected along the axis of the channel in
agreement with the exact solution. The first computation (unlimited slopes) shows a loss
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FIG. 2. Advection of a vortex at timest = 0.0, 1.0, 2.0, 3.0; 9 contour lines of the stream-function in
[0.02, 0.18]. Unlimited slopes (top), monotonized central-difference (middle), and Sweby’s limiter withk := 1.8
(bottom).

of vorticity comparable with [27] by exhibiting a stronger deformation of the vortex. The
second and the third computations (monotonized central-difference and Sweby’s limiter
with k := 1.8, see, e.g., Schulze-Rinne [36]) show even stronger deformation of the initial
vorticity distribution.

9.3. Driven Cavity Flows

The driven cavity test problems proposed in [28] have been the subject of many numerical
computations; see, e.g., [37, 4]. For Reynolds numbers (Re) up to 1000 most computations
seem to converge towards a steady state and there is an excellent agreement between station-
ary solutions obtained with different numerical schemes. Thus, these problems are very well
suited to validate new numerical methods. Here driven cavity flows at Reynolds numbers
100 and 1000 have been computed. Our main goals are

• Show that the method can be easily extended to cope with viscous flows.
• Investigate the behavior of the method with respect to the coupling between pressure

and velocity fields.
• Investigate the behavior of the method with respect to convergence towards station-

ary solutions.
• Compare our numerical results with established reference solutions.

In agreement with [28], we consider a viscous zero Mach number flow with no heat con-
duction. Viscous effects only enter in the momentum equation through a viscous stress and
are accounted for as explained in Subsection 3.1.

A delicate issue in the numerical computation of incompressible flows is that of the
coupling between pressure and velocity fields. For finite discretizations this problem (often
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referred to as “local grid decoupling” or “checker-board instability”) can be described as
follows. Assume that the null space of the discrete gradient operator, ker(GV̄V), contains
highly oscillating fields. SinceGV̄V has a local stencil this is usually the case whenever
dim(ker(GV̄V))>1. If the solutionpV̄ of the Poisson-type problem (44) has components in
ker(GV̄V) one obtains pressure oscillations which do not influence the velocity field: pressure
and velocity field decouple.

For two-dimensional equally spaced Cartesian grids and the implementation described
in Appendix A.3 one finds that dim(ker(GV̄V)) = 2 and ker(GV̄V) contains, beside constant
pressurespc

V̄ , a non-trivial highly oscillating modepo
V̄ . Therefore, we expect to observe

pressure-velocity decoupling whenever the iterative linear system solver for (44) converges
towards solutionspV̄ with components in ker(GV̄V). The method of conjugate gradients
preserves, by exact arithmetics, the components ofpk

V̄ in ker(GV̄V). Since we always start
our iteration withp0

V̄ := 0 we expect a numerical solution obtained in a reasonable number
of iteration steps to be oscillation free. This is confirmed by our numerical results. On
the other hand numerical solutions obtained through a random choice ofp0

V̄ may exhibit
pressure-velocity decoupling.

The understanding of the pressure-velocity decoupling in the limit of vanishing grid
size requires a deeper analysis. We have investigated numerically the effects (1) of grid
refinement at constant convection-based Courant numberC of 0.8 and (2) of time step
refinement for a fixed grid size. Some results are shown in Figs. 3 and 4. Neither in the first
nor in the second case do we observe the onset of pressure-velocity decoupling.

Figure 5 shows the time history of the residual

r n
2 :=

∑
V∈V

h2
∥∥Un
V − Un−1

V
∥∥

2

for a Re= 1000 computation on several grids. The residual is plotted versus the number of
computational steps. The cost of a single step on a 64× 64 grid is of about 1.3 s on a DEC
Alpha 21164 CPU running at 500 MHz. For the 128× 128 grid cells computation pressure
and streamlines of the numerical solution after 5000 time steps are shown in Figs. 6 and 7.
These results are in a good qualitative agreement with the ones presented by Ghiaet al.
[28, p. 400]. For a more quantitative comparison the horizontal (vertical) component of the

FIG. 3. Driven cavity atRe= 100,C= 0.8; 30 contour lines of the nodal pressurep(2)V̄ in [−0.4, 0.4]; 64× 64
(left) and 256× 256 (right) grid cells.
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FIG. 4. Driven cavity atRe= 100, 64× 64 grid cells; 30 contour lines of the nodal pressurep(2)V̄ in [−0.4, 0.4].
C= 0.08 (left) andC= 0.008 (right).

velocity along the vertical (horizontal) line through the geometric center of the cavity have
been drawn in Fig. 8. The solid line represents the numerical solution obtained with the
present method. The dots are values of a reference solution, taken from [28]. The accuracy
of this solution has been confirmed by many independent computations.

9.4. Falling Droplet

A heavy “droplet” falls through a light fluid atmosphere and impacts into the surface of
the heavy fluid in a cavity. The density ratio is 1000 : 1 and the Froude number is equal to

FIG. 5. Driven cavity atRe= 1000. Residual versus number of iterations for 32× 32, 64× 64, and 128× 128
grid cells computations; coarser grid solutions have been taken as initial data for finer grid solutions.
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FIG. 6. Driven cavity atRe= 1000, 128× 128 grid cells; 30 contour lines of the nodal pressurep(2)V̄ in
[−0.4; 0.4] (left) and streamlines (right). Streamline values and labels are taken from [28].

one. The flow is assumed to be inviscid and there is no account for surface tension or for a
change of the equation of state (hence, the quotes on “droplet”!). The computational domain
is the rectangle [0, 1]× [0, 2]. We present both two- and three-dimensional computations.
The goal is to investigate the capability of the method to cope with large density variations.
From the numerical point of view the effect of density variations is to increase the condition
number of the discrete Poisson-type operators associated to the numerical computation of
the pressurep(2). We expect poor convergence in the iterative solution of the linear systems
and, in the worst case, oscillations in the pressure fieldp(2)I . Since our interface pressures
p(2)I are computed via a discrete Poisson-type operator which, for two-dimensional equally
spaced Cartesian grids, exhibits local grid decoupling, we are particularly interested in the
behavior ofp(2)I in the two-dimensional case.

9.4.1. Two-dimensional case.This problem was originally proposed by Puckettet al.
[13] to test a tracking method for incompressible variably density flows. Here the interface
between light and heavy fluid is captured but we still expect our second order method to prop-
erly describe the main features of the flow. The computational grid consists of 64× 128 cells.

FIG. 7. Driven cavity at Re= 1000, 128× 128 grid cells; streamlines in the left and right bottom secondary
vortices. Values and labels are taken from [28].
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FIG. 8. Driven cavity at Re= 1000, 128× 128 grid cells; horizontal (vertical) component of the velocity along
the vertical (horizontal) line through the geometric center of the cavity; present results (solid line) and reference
solution from [28] (dots).

The initial data are

ρ(x, y, 0) =
{

1000.0 if 0.0≤ y ≤ 1.0 or 0.0≤ r ≤ 0.2
1.0 if 1.0< y ≤ 2.0 or 0.2< r

p(x, y, 0) = 1, Ev(x, y, 0) = 0, and r =
√
(x − 0.5)2+ (y− 1.75)2.

Figure 9 shows density contours at a sequence of output times. After the impact of the
droplet some areas of lighter fluid appear within the heavy fluid (last three frames). This is
consistent with the results shown in [13] where this effect was referred to as “trapped air
bubbles.” Figure 10 shows contour lines of the cell interface pressurep(2)Ī as the droplet
hits the surface of the heavy fluid in the cavity. We do not notice spurious oscillations or
local grid decoupling effects. The multi-grid preconditioned conjugate gradients technique
allows the iterative solution of the linear systems for the pressure in about the same number
of iterations as for the constant density case.

9.4.2. Three-dimensional case.This is a simple extension of the previous case to three
space dimensions. The grid consists of 64× 64× 128 cells. The initial data are

ρ(x, y, 0) =
{

1000.0 if 0.0≤ z≤ 1.0 or 0.0≤ r ≤ 0.2
1.0 if 1.0< z≤ 2.0 or 0.2< r

p(x, y, 0) = 1, Ev(x, y, 0) = 0, and r =
√
(x − 0.5)2+ (y− 0.5)2+ (z− 1.75)2.

Figure 11 shows the density iso-surface 500 as the droplet falls and impacts into the surface
of the heavy fluid in the closed cavity.
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FIG. 9. Two-dimensional falling “droplet” atFr= 1 and density ratio 1000. Contour lines of density in
[1,1000].

9.5. Thermo-acoustic Refrigerator

This example shows that our method can treat compressible zero Mach number flows
with heat conduction. A thermo-acoustic refrigerator basically consists of a resonance tube,
a stack of plates, two heat exchangers, and an acoustic driver (usually a loudspeaker). The
basic components of a thermo-acoustic refrigerator are sketched in Fig. 12. The flow within
the tube is characterized by two length scales, namely the short hydrodynamic and the
long acoustic scale. The Mach number in the tube is very small, typicallyO(10−3). Thus,
the flow between the plates, which are much shorter than the tube, can be assumed to be
incompressible with a prescribed velocity field imposed on the inlet and outlet boundaries.
The calculation focuses on the flow along the plate and the heat exchangers. The plate
is modeled as a zero thickness plate with finite thermal mass. The thickness of the heat
exchangers is zero as well. The geometry of the domain is shown in Fig. 13. The problem
is defined in terms of several characteristic numbers: the Prandtl numberPr, the Reynolds



FIG. 10. Two-dimensional falling “droplet” atFr= 1 and density ratio 1000; 10 contour lines of the cell
interface pressurep(2)I at−999,−990,−900,−800,−600,−400,−200, 0, 200, and 400 (left) and 10 contour
lines of the density in [1,1000] (right) att = 1.125.

FIG. 11. Three-dimensional falling “droplet” atFr= 1 and density ratio 1000. Iso-surfaceρ= 500 of density.

278
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TABLE III

Specific Number

Pr 0.68 uinlet 0.7711 cos(t)
Re 200 vinlet 0.0
γ 5/3 uoutlet 1.0267 cos(t)

Thot 1.0267 voutlet 0.0
Tcold 0.9733 λ 0.05
Pes 300 κ 41.14

FIG. 12. Sketch of a simplified thermo-acoustic refrigerator.

FIG. 13. Computational domain (dotted line).

FIG. 14. Temperature field during different times of an acoustic cycle;T := 2π .
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FIG. 15. Heat fluxes through the surface of the hot (left) and cold (right) heat exchanger during an acoustic
cycle.

numberRe, and the ratio of specific heatsγ . The temperatures of the heat exchangersThot,
Tcold are kept constant. The temperature distribution within the plate is governed by a heat
conduction equation,

∂T

∂t
= 1

Pes

(
∂2

∂x2
T + 2κ

λ

∂

∂y
T

∣∣∣∣
gas

)
, (57)

wherePes denotes the Peclet number of the solid,κ represents the ratio of the thermal
conductivities, andλ is the thermal penetration depth. The specific values are listed in
Table III. After 200 acoustic cycles a periodical solution is reached. Figure 14 shows the
temperature at different times during the 201st acoustic cycle. The heat fluxes through the
surface of the exchangers during an acoustic cycle are shown in Fig. 15.

10. CONCLUSIONS AND FUTURE WORK

Summary and conclusions.This paper demonstrates that a finite volume compressible
flow solver can be extended to handle incompressible, zero Mach number flows. Our ap-
proach is general enough to include a wide variety of underlying compressible flow schemes.
The major ingredients of the required extensions are two pressure Poisson-solutions. These
allow us to enforce zero Mach number elliptic divergence constraints for the convective
numerical fluxes as well as for the final cell-centered velocity fields.

The design of the scheme directly draws on a low Mach number asymptotic analysis of the
governing equations in conservation form. The analysis, which was presented in [19], shows
how the well-known velocity divergence constraint of incompressible flows emerges in a
natural way from an associated divergence constraint on the energy flux as the Mach number
vanishes. The insight gained in this way is used to construct numerical fluxes of mass,
momentum, and energy that are consistent with the zero Mach number limit. The scheme
thus represents a discretization of the full conservation equations rather than one of an
asymptotic limit system which would explicitly introduce a velocity divergence constraint!

The computational examples given are chosen to demonstrate various features of the
proposed method. Thus we show second order accuracy for a test problem proposed by
Almgrenet al. [33], and we obtain competitive results on the test problem of an advected
zero circulation vortex as proposed by Gresho and Chan [27]. After adding a first order in
time extension to viscous incompressible flow, we find very close agreement with published
results in the literature for standard driven cavity test problems (see Ghiaet al. [28]). Notably,
grid refinement at constant convection-based CFL number of 0.8 as well as decreasing time
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steps at constant spacial resolution do not affect the results. This suggests stability and
convergence of the method, even though we cannot provide rigorous proofs at this stage.
Excellent behavior of the scheme is found for variable density flows. A “falling droplet”
with a density ratio of 1000, simulated by a suitable choice of an initial entropy distribution
in an ideal gas, is handled without evidence of pressure, velocity, or density oscillations.

Current limitations and future work.The asymptotics in [19] has been carried out for an
ideal gas equation of state assuming constant ratio of heat capacities. A consequence is that
the leading and the first order components of the total energy per unit volume, which is the
conserved energy quantity in our numerical scheme, are proportional to the leading and to the
first order pressure components, respectively. This simplifies the formulation of the asymp-
totic limiting form of the energy equation and, hence, the set-up of the numerical method.

In the present paper we have restricted ourselves to the zero Mach number limit, but
considered multi-dimensional flows. In contrast, [19] was restricted to one space dimension
for the numerics, but allowed small, but non-zero Mach numbers. The obvious next step
is to combine the approaches and construct a method that allows a smooth transition from
fully compressible to zero Mach number. A first realization of this generalization of the
present ideas has been described by one of the authors in [18].

The original motivation for this work stems from combustion applications; notably from
the desire to simulate deflagration-to-detonation transitions, where, throughout a compu-
tation, the Mach number would vary fromM ≈ 10−4 to M ≈ 10. Thus, two of our further
goals are (i) to extend the scheme to include chemical reactions for resolved computations of
combustion processes at arbitrary Mach number and (ii) to combine the present technology
with the flame front capturing-tracking ideas from [40] (compressible flow) and [29] (zero
Mach number combustion).

APPENDIX

A.1. Fake Acoustics in the SystemI ∗ Remain Small

Let Ev(Ex, t), p(Ex, t) be a smooth solution of the auxiliary system (9) for initial dataEv(Ex, 0),
p(Ex, 0) such that

∇ · Ev(Ex, 0) = 0

∇ p(Ex, 0) = ∇ p(0)(Ex, 0) = 0.

From(9.3), (9.4) one has

pt (Ex, 0) = (γ − 1)(ρe)t (Ex, 0)
= −(γ − 1)∇ · ((ρe(Ex, 0)+ p(Ex, 0)) Ev(Ex, 0))
= −∇ · (γ p(Ex, 0) Ev(Ex, 0))
= −γ Ev(Ex, 0) · ∇ p(Ex, 0)− γ p(Ex, 0)∇ · Ev(Ex, 0)
= 0.

ExpandingEv(Ex, t) and p(Ex, t) aboutt = 0 and using the above equations yields

∇ · Ev(Ex, t) = ∇ · Ev(Ex, 0)+O(t) = O(t)
∇ p(Ex, t) = ∇ p(Ex, 0)+∇ pt (Ex, 0)t +O(t2) = O(t2)

as stated in (11).
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A.2. First Projection: Discrete Poisson Equation

We write the discrete gradientGVI and divergenceDIV for a two-dimensional Cartesian grid
of constant spacingsδx andδy and derive the explicit form of the Poisson-like equation (32).
The double index(i, j ) is used to tag a cell value. The indexes(i +1/2, j ), (i, j +1/2) are
used for interface values between the cells(i, j ), (i+1, j ) and(i, j ), (i, j+1), respectively.
The discrete gradientGVI is defined as

GVi+1/2, j (pV) :=


pi+1, j − pi, j

δx
pi, j+1− pi, j−1+ pi+1, j+1− pi+1, j−1

4δy



GVi, j+1/2 (pV) :=


pi+1, j − pi−1, j + pi+1, j+1− pi−1, j+1

4δx
pi, j+1− pi, j

δy

.

The discrete divergenceDIV is, according to Eq. (31),

DIi, j (EvI) := ui+1/2, j − ui−1/2, j

δx
+ vi, j+1/2− vi, j−1/2

δy

with EvI := (uI , vI). With these definitionsDIVGVI is the standard 5-points Laplacian

DIi, j
(
GVI (pV)

)
:= pi+1, j − 2pi, j + pi−1, j

δx2
+ pi, j+1− 2pi, j + pi, j−1

δy2
,

and the (i, j)th equation of the linear system (32) for the cell valuespV reads

h0,∗
i+1/2, j p(2)i+1, j −

(
h0,∗

i+1/2, j + h0,∗
i−1/2, j

)
p(2)i, j + h0,∗

i−1/2, j p(2)i−1, j

δx2

+ h0,∗
i, j+1/2 p(2)i, j+1−

(
h0,∗

i, j+1/2+ h0,∗
i, j−1/2

)
p(2)i, j + h0,∗

i, j−1/2 p(2)i, j−1

δy2

= 2

δt

(
F∗ρe;i+1/2, j − F∗ρe;i−1/2, j

δx
+ G∗ρe;i, j+1/2− G∗ρe;i, j−1/2

δy

)
+ 2

δt

1

γ − 1

dp(0)

dt
,

with F∗ρe;i+1/2, j := (ρh0u)∗i+1/2, j andG∗ρe;i, j+1/2 := (ρh0v)∗i, j+1/2.

A.3. Second Projection: Discrete Poisson Equation

We write the discrete gradientGV̄V and the divergenceDVV̄ for a two-dimensional regular
Cartesian grid and derive the explicit form of the Poisson-like equation (44). Beside the
notation introduced in the previous section we use the double index(i + 1/2, j + 1/2) to
tag node values. The indexes(i +1, j +1/2), (i +1/2, j +1) are used for interface values
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between the node centered control volumes(i + 1/2, j + 1/2), (i + 3/2, j + 1/2) and
(i +1/2, j +1/2), (i +1/2, j +3/2), respectively (Fig. 16). The linear operatorsL V̄I (pV̄),
LVĪ (EvV) are defined as

L V̄i+1/2, j (pV̄) := 1

2
(pi+1/2, j+1/2+ pi+1/2, j−1/2)

L V̄i, j+1/2(pV̄) := 1

2
(pi−1/2, j+1/2+ pi+1/2, j+1/2)

LVi+1, j+1/2(EvV) := 1

2
(Evi+1, j+1+ Evi+1, j )

LVi+1/2, j+1(EvV) := 1

2
(Evi, j+1+ Evi+1, j+1).

With these definitions the discrete gradientGV̄V is, according to Eq. (37),

GV̄i, j (pV̄) =


L V̄i+1/2, j (pV̄)− L V̄i−1/2, j (pV̄)

δx

L V̄i, j+1/2(pV̄)− L V̄i, j−1/2(pV̄)

δy



=


pi+1/2, j+1/2− pi−1/2, j+1/2+ pi+1/2, j−1/2− pi−1/2, j−1/2

2δx
pi+1/2, j+1/2− pi+1/2, j−1/2+ pi−1/2, j+1/2− pi−1/2, j−1/2

2δy

 .

FIG. 16. Two-dimensional Cartesian grid.
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After (42) the divergenceDVV̄ is

DVi+1/2, j+1/2(EvV) =
LVi+1, j+1/2(uV)− LVi, j+1/2(uV)

δx
+ LVi+1/2, j+1(vV)− LVi+1/2, j (vV)

δy

= ui+1, j+1− ui, j+1+ ui+1, j − ui, j

2δx
+ vi, j+1− vi, j + vi+1, j+1− vi+1, j

2δy
.

With the above definitionsDVV̄ (G
V̄
V(pV̄)) is the standard 9-points Laplacian

DVi+1/2, j+1/2

(
GV̄V(pV̄)

) = 1

4

δx2+ δy2

δx2δy2
ai+1/2, j+1/2− 1

2

δx2− δy2

δx2δy2
bi+1/2, j+1/2

with

ai+1/2, j+1/2 := pi+3/2, j+3/2+ pi−1/2, j+3/2+ pi−1/2, j−1/2+ pi+3/2, j−1/2− 4pi+1/2, j+1/2

bi+1/2, j+1/2 := pi+3/2, j+1/2− pi+1/2, j+3/2+ pi−1/2, j+1/2− pi+1/2, j−1/2.

Forδx = δy the second term on the right hand side of the discrete Laplacian disappears and
the stencil ofDVV̄ (G

V̄
V(pV̄)) reduces to a five diagonal point stencil. The(i +1/2, j +1/2)th

equation of the linear system (44) becomes

1

4δx2

[
hn+1

i+1, j+1

(
p(2)i+3/2, j+3/2− p(2)i+1/2, j+3/2+ p(2)i+3/2, j+1/2− p(2)i+1/2, j+1/2

)
− hn+1

i, j+1

(
p(2)i+1/2, j+3/2− p(2)i−1/2, j+3/2+ p(2)i+1/2, j+1/2− p(2)i−1/2, j+1/2

)
+ hn+1

i+1, j

(
p(2)i+3/2, j+1/2− p(2)i+1/2, j+1/2+ p(2)i+3/2, j−1/2− p(2)i+1/2, j−1/2

)
− hn+1

i, j

(
p(2)i+1/2, j+1/2− p(2)i−1/2, j+1/2+ p(2)i+1/2, j−1/2− p(2)i−1/2, j−1/2

)]
+ 1

4δy2

[
hn+1

i, j+1

(
p(2)i+1/2, j+3/2− p(2)i+1/2, j+1/2+ p(2)i−1/2, j+3/2− p(2)i−1/2, j+1/2

)
− hn+1

i, j

(
p(2)i+1/2, j+1/2− p(2)i+1/2, j−1/2+ p(2)i−1/2, j+1/2− p(2)i−1/2, j−1/2

)
+ hn+1

i+1, j+1

(
p(2)i+3/2, j+3/2− p(2)i+3/2, j+1/2+ p(2)i+1/2, j+3/2− p(2)i+1/2, j+1/2

)
− hn+1

i+1, j

(
p(2)i+3/2, j+1/2− p(2)i+3/2, j−1/2+ p(2)i+1/2, j+1/2− p(2)i+1/2, j−1/2

)]
= 1

δt

1

2δx

[
hn+1

i+1, j+1ρu∗∗i+1, j+1− hn+1
i, j+1ρu∗∗i, j+1+ hn+1

i+1, jρu∗∗i+1, j − hn+1
i, j ρu∗∗i, j

]
+ 1

δt

1

2δy

[
hn+1

i, j+1ρv
∗∗
i, j+1− hn+1

i, j ρv
∗∗
i, j + hn+1

i+1, j+1ρv
∗∗
i+1, j+1− hn+1

i+1, jρv
∗∗
i+1, j

]
.
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auf die F̈alle kleiner und verschwindender Machzahl, Ph.D. thesis, Rheinisch-Westf¨alischen Technischen
Hochschule Aachen, D 82, 1997.

19. R. Klein, Semi-implicit extension of a godunov-type scheme based on low mach number asymptotics. I.
One-dimensional flow,J. Comput. Phys.121, 213 (1995).

20. J. L. Sesterhenn,Zur numerischen Berechnung kompressibler Strömungen bei kleinen Mach-Zahlen, Ph.D.
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